Using Interpolation Regions to Discriminate Models of Function Learning

نویسنده

  • Eric Dimperio
چکیده

This paper serves to compare existing models of function learning (EXAM & POLE) on a complex interpolation task. Previous comparisons of the models have focused primarily on extrapolation behaviors. Participants’ mean responses suggested a simple linear interpolation from nearby points of reference. Both models were able to predict a similar response. Although POLE served as a better predictor of responses made during training, the EXAM model was a better predictor of interpolation responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new trust-region algorithm based on radial basis function interpolation

Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...

متن کامل

A Comparison on Function of Kriging and Inverse Distance Weighting Models in PM10 Zoning in Urban Area

Introduction: The present study aimed to compare the performance of two widely-used models for spatial assessment of particulate matter less than 10 microns (PM10) in ambient air of Yazd city. Finally, effective factors on concentrations of pollutants and corresponding standards were investigated. Materials and Methods: A number of 13 sampling stations were employed in different areas of Yazd ...

متن کامل

Approximation of a Fuzzy Function by Using Radial Basis Functions Interpolation

In the present paper, Radial Basis Function interpolations are applied to approximate a fuzzy function $tilde{f}:Rrightarrow mathcal{F}(R)$, on a discrete point set $X={x_1,x_2,ldots,x_n}$, by a fuzzy-valued function $tilde{S}$. RBFs are based on linear combinations of terms which include a single univariate function. Applying RBF to approximate a fuzzy function, a linear system wil...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Learning Qualitative Models through Partial Derivatives by Padé

Padé is a new method for learning qualitative models from observation data by computing partial derivatives from the data. Padé estimates partial derivatives of a target function from the learning data by splitting the attribute space into triangles or stars from Delaunay triangulation, or into tubes, and computing the linear interpolation or regression within these regions. Generalization is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007